

Dr Ambedkar Institute of Technology, Bengaluru Department of Mechanical Engineering LESSON PLAN-WORK ABSTRACT

Subject	Elements of Mechanical Engineering
Code	21MET105
Credit	4
Hrs/Week	4/Week

Faculty	Rajesh Chandra C
Class	J Section
Sem	I st Semester
AY	2021 - 2022

 $\begin{array}{|c|c|c|c|}\hline T/L \\ \hline Method \end{array} 1 \ Lecturing(L) & 2 \ Tutorial(T) \\ \hline 3 \ Discussion/Interaction(D) \\ \hline 4 \ Audio-Visual (AV) \\ \hline 5 \ Quiz(Q) \\ \hline \end{array}$

Class No	Unit No	Planned Topics	T/L Method Followed	Date	Duration	Portion covered /Partially covered	Remarks
6 ⁰¹	01	Introduction to Mechanical Engineering (Overview only): Role of Mechanical Engineering in Industries and Society	L	29-12-21	I	INTRODUCTION TO MECHANICAL ENGG	
02	01	Sources of energy: Classification, renewable and non- renewable sources of energy and comparison.	L	29.12.21	ļ	BOURCES OF ENERGY	
03	01	Steam: Steam formation at a constant pressure: properties of steam, simple numerical problems to understand the use of steam tables. Applications of steam in industries.	L	29.12.21	١	FOR MATION & APPLICATIONS OF BREAM	
04	01	Power generating systems: Introduction, construction and working of: Steam turbines – Impulse	L	31,12,21	١	BPEAM TURBINES - IMPULBE	
05	01	Steam turbines - reaction turbine,	L	01.01.22	1	STEAM TURBINES - REACTION	
06	01	Gas turbines – Open and closed cycle	L	03.01.22		GASTURBINES.	
07	01	Hydraulic turbines – Pelton wheel, Francis and Kaplan turbine	L	05.01.22	l	WATER TURBINES.	
08	01	Power absorbing systems: Introduction, classification of pumps and compressors.	L	05.01.22	1	PUMPS & COMPRESSORS	
09	02	Internal combustion engines: Introduction, classification, parts and terminology of I C engines	L	07.01.22		J.C. ENGINES	
10	02	working of 4-stroke petrol & diesel engines,	L	08.01.22	1	4-STROKE IC ENGINE	
11	02	simple numerical problems on four stroke engines. Applications of IC engines.	L	10.01.22	l	NUMERICALS	
12	02	Hybrid and Electrical vehicles: hybrid vehicles.	L	12.01.22	I	HYBRIDA ELECTRIC	

Departmensor international Engineering Dr. Amberikar Institute of Technology eat Engineering 8engaluru - 560 056.

Class No	Unit No	Planned Topics	T/L Method Followed	Date	Duration	Portion covered /Partially covered	Remarks
13	02	Refrigeration and Air conditioning- Introduction, definition and unit of refrigeration. Refrigerants and their properties.	-A-V	12:01:22	1	REPRIGERATION	
14	02	Types of refrigeration systems- Vapour absorption and Vapour compression refrigeration systems and their comparison.	VA-	17.01.22	l	V-APOUR -ABSORPTION 4 VAPOUR COMPRESSION BUSTEMS	
15	02	Principle & working of room air conditioner. Applications of Refrigerators and Air conditioning system.	VĄ	19.01.22		ROOM AIR CONDITIONER	
16	02	Laboratory Component: Demo of IC Engines, Refrigerator	L	19.01.22	2	DEMONSTRATIONS	
17	03	Engineering Materials: Types and applications of ferrous, nonferrous metals and alloys.	L	21.01.22	1	ENGINEERING MATERIALS	
18	03	Composite Materials: Introduction, classification and applications.	L	24.01.22	1	COMPOSITES	
19	03	Heat treatment: Introduction to heat treatment, Types of Heat Treatment: Annealing, quenching, carburizing, and hardening.	L	28.01.22	١	HEAT TREATMENT	
20	03	Metal Joining Processes:	L	29.01.22	1	METAL JOINING	
21	03	Soldering and brazing: Definition, types, advantages, limitations and applications of soldering and brazing. Working principle of soldering iron and torch brazing methods.	L	31.01.22	l	BOLDERING É. BRAZING	
نه 22	03	Welding: Introduction, classification and applications of welding. Working principle of electric arc welding and oxy- acetylene gas welding. Introduction to TIG and MIG welding.	L	02.02.22	l	WELDING, TIG & MIG WELDING	
23	03	Laboratory Component: One exercise each involving Welding, Soldering, and Brazing	L	04,02,92	l	DEMONSTRATIONS	
24	03	Laboratory Component: Demonstration of Heat transfer application device	L	11.02.22	ł	DEMONSTRATIONS	
25	04	Belt drives – Introduction, types of belts and belt drive. Terminology - velocity ratio, creep and slip.	L	18.02.22	١	BELT DRIVES.	
100	64	Der te la maria	L	21.02.22		NUMERICALS	

T Department of Mechanical Englapering Or. Ambodikar Institute of Tectimetony Or. Ambodikar Institute of Tectimetony

Class No	Unit No	Planned Topics	T/L Method Followed	Date	Duration	Portion covered /Partially covered	Remarks
27	04	Gear drives - Introduction, classification; Gear trains – types of gear train. Simple numerical problems on gear drives.	L	21.02.22	1	GEAR DRIVES & GEAR TRAINS	
28	04	Problems	L	25.02.22	l	MUMERICALS	
29	04	Robotics: Robot anatomy, Joints & links, common Robot configurations.	L	04.03.22		ROBOTICS	
30	04	Applications of Robotics in Material Handling, Processing, Assembly, and Inspection.	L	04.03.22		APPLICATION OF ROBOTICS	
31	04	Laboratory Components - Demonstration of various elementary mechanisms and their motion.	L	07.03.22	2	DEMONSTRATIONS	
32	04	Laboratory Components - Demonstration of any one model of Robot	L	14.03.22	I	DEMONSTRATIONS	
33	04	Manufacturing process: Introduction and classification of manufacturing process.	L	14.03.22	٢	MANUFACTURING PROCESS	
34	04	Machine tools: Lathe -Working principle and specification of center lathe. Sketch and description of operations performed – turning, facing, knurling, thread cutting, drilling taper turning.	L	15.03.22	1	LATHE & OPERATIONS PERFORMED ON A LATHE	
35	04	Construction and Working of Milling Machines and applications	L	16.03.22	ł	MILLING MACHINES	
36	04	Introduction to Mechatronics: Concept of open-loop and closed-loop systems.	Ĺ	16.03.22	l	MECHATRONICS	
37	04	Examples of Mechatronic systems and their working principle.	L	98.03.22	(WORKING PRINCIPLE	
38	04	Rapid prototyping (3D printing) - Definition, Classifications, Advantages, Disadvantages, Applications, Brief introduction of 3D Printers -SLA, SLS, FDM.	L	28:03:22	١	RAPID PROTOTYPING, 3D-PRINTING	
39	05	Laboratory Components: Demonstration of developing one model involving Lathe, Milling and Drilling		04.04.22	١	DEMONSTRATIONS	
40	05	Laboratory Components: Study/Visit an Industry using CNC/ modern techniques and submit a report	L	04.22	2	DEMONSTRATIONS	

Department of Mechanical Engineering Department of Mechanical Engineering Sr. Amhedkar Institute of Technology Sr. Amhedkar Institute of Schoology Y

Jopen -

Dr Ambedkar Institute of Technology, Bengaluru Department of Mechanical Engineering *LESSON PLAN-WORK ABSTRACT*

Alded	By Govt. of Ka	amataka				Faculty	AF	RAVINDA D		
Su	bject	HEAT TRAN	SFER			Close		C Section		
C	Code	18ME62			Som 5		5#	5th Semester		
C	redit	4					20 -2021			
Hrs	/Week	5/Week				AI	20	20 2021		
T) Met	/L thod	1 Lecturing(L)	2 Tutorial(T)	3 Discu	ussion/Int	eraction	(D)	4 Audio-Visual(AV)	5 Quiz	:(Q)
Class No	Unit No	Planned T	opics	T/L Method Followed	Date	Dura	tion	Portion covered /Partia covered	ally ₁	Remarks
	l	UNIT NO 01[9]	+4T1: BASIC	CONCE	PTS ANI) CONI	OUC	TION HEAT TRANSF	ER	
01	01	Introduction to Discussion or coverage, Tex reference books, Question paper CIE, SEE, e-reso Introduction - M transfer, Basic law heat transfer mech	the subject, n syllabus xt books, Assignment, pattern of ources. lodes of heat ws, Combined anism		01			Fully would		
02	01	Resistance conce conditions of 1 st kind; Therr resistance	ept, Boundary ^t , 2 nd and 3 rd nal contact	L	65 64	١		Fully lovered	-	
03	01	Overall heat trans Illustrations of boundary condit transfer problems	fer coefficient; applying the ions to heat	L	04		l	Fully wree	1	
• 1	01	Derivation c equation of heat Cartesian coordi	of general conduction in nates; Special	L	06	١		Fully were	Ĺ	
05	01	Discussion on 3-E cylindrical an coordinate sy derivation)	D conduction in d spherical ystems (No	L	67 64		1	Fully love	y L	
06	01	Steady state heat simple and con cylinders and sp thermal conductiv heat generation)	conduction in mposite slabs, heres (uniform vity and without	L	68 04			Fully love	red	
07	01	Numerical proble	ems	T	09/1	ч	١	Fully Win	ed	
08	01	Numerical proble	ems	r	10/0	4 \		Filly w	ud	
09	01	Numerical proble	ems	1	nor		١	Ruly we	ud	
10	01	Numerical proble	ems	1	15/2	ł	١	trilly lov	red	
	Depa Dr. I	rt(nant of Aldehanto Ambedkar Institute Bengaluru - 56	ial Engineering of Technology 60 056.		I					

						/
11	01	Introduction to variable thermal conductivity and heat generation;	L	16]	Fully wind of
12	01	Concept and derivation of critical thickness of insulation in cylinders	L	16		Fully Wind
13	01	And spheres. (No numerical problems on variable thermal conductivity, heat generation and critical thickness)	L	17		Fully would
UNI	ΓΝΟ	02 [9L +4T]: EXTENDED SUR	FACES	AND ONE-	DIMENSI	ONAL UNSTEADY CONDUCTION
		Introduction to extended	HEAT	TRANSF	ER	
14	02	surfaces;.	L	19104	١	Fully covered
ţ	02	Derivation of heat transfer and temperature distribution in fins (uniform cross-section without heat generation);	L	70 04	/	Fully loved
1¢	02	Long fin, short fin with insulated tip and without insulated tip and fin connected between two heat sources;	L	27		Fully anend
13_	02	Fin efficiency and effectiveness;	V	21/04)	fully avered
1 \$	02	Related numerical problems	レ	22)	Fully Weed
16	02	Related numerical problems	1	23/04		Billy Wind
278	02	Related numerical problems	T	24/04	1	Pully would
18	02	Related numerical problems	T			Rully avered
29	02	Introduction	,	26/04		Ruly rovard
20-	02	Conduction in solids with negligible internal temperature gradient (Lumped system analysis	L	26		Fully Covered
23,	02	Use of Transient temperature charts (Heisler's charts) for transient conduction in slab, long cylinder and sphere	L	27 64	1	Fully covered
2 g	02	Use of Transient temperature charts (Heisler's charts) for transient conduction in slab, long cylinder and sphere(continued)	L	27	1	Fully low ever
2 3	02	Use of Transient temperature charts (Heisler's charts) for transient conduction in slab, long cylinder and sphere(continued)	L	28 54		Fully lovered
2 4 0	02	Use of transient temperature charts for transient conduction in semi-infinite solids.	V	29		Fully wind

25	02	Related Numericals	1_		1	Fully lovered
26	02	Related Numericals.	1	29/04		Fills Ward
		UNIT NO 03[9L	∕ +4T]: CC	NVECTIC)N HEAT	TRANSFER
		Introduction - Boundary layer				
27	03	concept in external and internal flow	L	30	1	Fully avered
28	03	Forced convection - Dimensional analysis for forced convection;	L	03/05)	Fully writed
29	03	physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers	L	04/05	1	Fully wind
30	03	Use of correlations for flow over simple geometries (flat plate, cylinder and sphere) Use of correlations for flow inside a duct.	L	64/05)	Fully wered
31	03	Free or natural convection - Dimensional analysis for free convection	L	05/5	1	July avered
32	03	Physical significance of Grashof number; use of correlations of free convection over flat plates (vertical, horizontal and inclined),	L	66		Fully wied
33	03	cylinders (vertical and horizontal) and spheres	L	67/15		Fully would
34	03	Related Numericals	1	08/05		fully avered
35	03	Related Numericals.	T	08/05	1	trully lovered
36	03	Related Numericals	T	15/05		Pully Wind
37	03	Introduction to boiling: pool boiling, Bubble Growth Mechanisms	L	12/05		July wind
38	03	, Nucleate Pool Boiling, Critical Heat Flux in Nucleate Pool Boiling, Pool Film Boiling,	L	18/05		Fully lovind
39	03	Critical Heat Flux, Heat Transfer beyond the Critical Point, film wise and drop wise Condensation (No numerical problems on boiling and condensation)	L	19/05	1	fully would
	1	UNIT NO	04[9L +4	T]: HEAT	EXCHAN	GERS
40	04	Introduction		20].	1	KIL I
41	04	Classification of heat exchangers		20/05		puty wind
pepa	04	Classification of heat exchangers of Mechanism Engineering	2	20/05		Fully wined.

42	04	Compact, Shell-and-tube and Plate heat exchangers Overall heat transfer coefficient and fouling factor	L	2]		Fully avered	de la
43	04	Parallel and counter flow heat exchangers	L	2/05	1	Fully would	
44	04	Use of LMTD; Cross flow heat exchangers; Comparison of parallel and counter flow heat exchangers	L	24/05		Fully writed	
45	04	Heat transfer with phase change; Multi pass heat exchangers	${\cal V}$	25 65	1	Fully were	
46	04	Effectiveness-NTU method; Limiting cases	V	26/05	1	Fully would	
47	04	Heat transfer enhancement in fins; Related numerical problems;.	V	26/05	/	Fully covered	
48	04	Heat pipes – Introduction; Working principle; components; Applications; Limitations	u	24 5	١	Failly wrend	10
49	04	Related Numericals.	1	28/15		Fully wered	
50	04	Related Numericals.	T	28/05		Fully would	
51	04	Related Numericals.	+	29/05		Ruly Wired	
52	04	Related Numericals.	1	294/06	1	Fully world	
		UNIT NO 05[9]	L +4T]: I	RADIATIC	N HEAT	TRANSFER	
53	05	Introduction; Fundamental principles - Gray, White, Opaque,	L	05		Fully writed	
54	05	Transparent and Black bodies, Spectral emissive power, Wien's displacement law, Planck's laws,	L	06		Fully word	
55	05	Hemispherical Emissive Power, Stefan-Boltzmann law for the total emissive power of a black body, Emissivity and Kirchhoff's Laws;	L	08	1	Fully wired	
56	05	Black bodies separated by a non-absorbing medium; Shape factor; Electrical analogy;	L	09)	Fully word	
57	05	by non-conducting and re- radiating walls;	V	10		Fully lovered	

i	8	05	Evaluation of shape factor; Radiation heat transfer between gray bodies;	L	11/06		Fully wind	
5	9	05	Radiosity and Irradiation; Radiation network for gray surfaces exchanging energy;	L	12-06		Fully whered	
60	0	05	Hottel's crossed string method;	L	14/06		Failly wined	
61	1	05	Radiation shields;	V	1500		Frily Wired	
62	2	05	Related numerical problems	T	16/06)	Frikly Conned	
63	3	05	Related numerical problems	ſ	18/00		tendly word	
64	1	05	Related numerical problems	T	18/26	١	Fully livered	
65	5	05	Related numerical problems	1	19/06	١	Fully Ward.	

And the second s Department of Mechanical Engineering Dr. Ambedikar Institute of Technology Bengaluru - 560 056. <u>ъ.</u>,

20

Signature of Course Faculty

Dr Ambedkar Institute of Technology, Bengaluru Department of Mechanical Engineering LESSON PLAN-WORK ABSTRACT

Subject	Dynamics of Machines
Code	18ME52
Credit	3
Hrs/Week	4/Week

Faculty	Rajesh Chandra C
Class	C Section
Sem	5 th Semester
AY	2021 - 2022

T/L Method	1 Lecturing(L)	2 Tutorial(T)	3 Discussion/Interaction(D)			4 Audio-Visual (AV)	5 Quiz(Q)	(
17. 1		1	Γ/L					

Class No	Unit No	Planned Topics	T/L Method Followed	Date	Duration	Portion covered /Partially covered Remarks
01	01	STATIC FORCE ANALYSIS: Introduction, Static equilibrium	L	28.10.21	1	STATIC FORCE ANALYSIS
9 2	01	Equilibrium of two and three force members	L	26.10.21	1	EQUILIBRIUM OF 243 FORCE
03	01	Members with two forces and torque	L	27.10.29	1	MEMBERS WITH 2 FORCES
04	01	Free body diagrams	L	27.10.29	l	FREE BODY DIAGRAMS
05	01	Static force analysis of simple mechanisms	L	02.11.21	1	BIMPLE MECHANISM ANALYSS
06	01	Numericals	L	08.11.21	1	NUMERICALS.
07	01	Numericals	L	09.11.21	1	NUMERICALS
08	01	Principle of virtual work	L	10,11,21	1	PRINCIPLE OF VIRTUAL WORK
09	02	Dynamic Force Analysis	L	15.11.21		DYNAMIC FORCE ANALYSIS
10	02	Motion and Inertia	L	16.11.21	f	MOTION & INERTIA.
1	02	D'Alembert's Principle	L	16.11.21	1	D'ALEMBET'S PRINCIPCE
12	02	Inertia force and Inertia Torque	L	17.11.21	1	INERTIA FORCE & TORGUE
13	02	Inertia Forces in four bar mechanism	L	17.11.21	1	INERTIA FORCES IN 4 BAR
]4	02	Numericals	L	18.11.21	1	NUMERICALS
15	02	Numericals	L	18.11.21	1	NUMERICALS
16	03	FRICTION AND BELT DRIVES: Definitions: Types of friction, Co-efficient of friction,	L	19.11.21	1	TYPES & CO-EFFICIENT OF FRICTION
17	03	Friction between lubricated and unlubricated surfaces, Laws of static and Kinetic friction,	L	19.11.21	١	LUBRICATED & UNLUBRICATED SURFACES
18	03	Friction of Pivot & Conical bearings	L	20.11.21	1	PINOT & CONICAL BEARINGS

Department of Mechanical Engineering Dr. Ambedkar Institute of Technology

Bendaluru - 560 056.

Clas No	s Unit No	Unit Planned Topics		Date	Duration	Portion covered /Partially covered	Remarks
19	9 03 Numericals		L	22.11.21	1	NUMERICALS	
20	03	Belt Drives: Initial Tension in the belt, ratio of belt tensions,	L	23.11.21	t	BECT DRIVES	
21	03	Effect of centrifugal tension, Power Transmitted by belt, thickness and width calculations	L	શ્વનાન્ય	1	CENTRIFUGAL TENSION POWER TRANSMITTED.	
22	03	V- Belts, Rope Drives	L	30:11:21	l	V-BECTS, ROPE DRIVES	
23	03	Numericals	L	01.12.21	1	NUMERICALS	
24	04	BALANCING OF ROTATING MASSES: Static and dynamic balancing.	L	06.12.24	l	SPATIC & DYNAMIC BAGANCING	
25	04	Balancing of single rotating mass in same plane and in different planes	L	07.12.21		BINGLE ROTATING MASS - 2 COND	
	04	Numericals.	L	08.12.7		NUMERICALS	
27	7 04	Balancing of several rotating masses in same plane and in different planes	L	13.12.21	l	SEVERAL ROTA-TING MASSES - 2 Cond	
28	3 04	Numericals.	L	14.12.71		NUMERICALS	
29	9 04	BALANCING OF RECIPROCATING MASSES: Inertia effect of crank and connecting rod, single cylinder engine	L	04.01.22		BALANCING OF RECIPROCATING MASSES	
3	0 04	balancing in multi cylinder- inline engine (primary & secondary forces)	L	05:01.22		BALANCING OF MULTI - CYCINDER ENGI	
3	1 04	V-type engine - Numericals.	L	06.01.2	2 1	V-TYPE ENGINES.	
3	2 05	GOVERNORS: Types of governors;	L	10.01.22	1	TYPES OF GOVERNORS	
9 3	3 05	Force analysis of Porter	L	11.01.22	- 1	PORTER/HARTNELL GOVERNOPS	
3	4 05	Controlling force, stability,	1	12.01.25	2 1	CONTROLLING FORCE	
3	5 05	Isochronism, effort and	1	1.3.01.22	1	ISOCHRONISM, EFFORT	
3	6 05	GYROSCOPES: Vectorial representation of angular	L	18:01:22	- 1	GYROSCOPES	
3	7 05	Gyroscopic couple. Effect of gyroscopic couple on the movement of plane disc &	L	19.01.2	2	GYROSOPIC GUPLE ON PLANE DISC & AEROPLANE	
3	8 05	Stability of two-wheeler and four-wheeler taking a turn	L	20:01:2	2 1	STABILITY OF 2-24 WHEELER	
3	9 05	Numericals.	L	25.01.2	2	NUMERICALS.	

Popartment of Mechanical Engineering

Leph. fra